
www.elsevier.com/locate/jcp

Journal of Computational Physics 194 (2004) 35–56
A quadtree adaptive method for simulating fluid flows
with moving interfaces

Deborah Greaves

Department of Architecture and Civil Engineering, University of Bath, Claverton Down, Bath BA2 7AY, UK

Received 9 October 2002; received in revised form 27 June 2003; accepted 21 August 2003
Abstract

In this paper, a computational method for solving fluid flow problems with moving interfaces is presented. Herein,

adaptive quadtree grids are used coupled with the CICSAM [O. Ubbink, Numerical prediction of two fluid systems with

sharp interfaces, PhD Thesis, Imperial College of Science, Technology and Medicine, London, 1997] free surface

capturing volume of fluid (VoF) method and PLIC reconstruction to interpolate the volume fraction field during re-

finement and derefinement processes. The combination of high resolution adaptive hierarchical remeshing and CIC-

SAM interface advection is shown to overcome the problems of interface smearing and high CPU intensivity inherent in

most VoF schemes. The result is a combination of free surface tracking and free surface capturing in that the interface

is effectively tracked by the adapting refinements in the quadtree grid. In this way, a sharp interface is achieved and

the advantages of both free surface tracking and capturing are combined. The new method is applied to interface

advection examples in translating, rotating and shearing flow fields, and the benefits of using adapting quadtree grids

demonstrated.

� 2003 Elsevier B.V. All rights reserved.

Keywords: Adaptive grids; Quadtrees; Grid refinement; Volume of fluid; Moving fluid interface
1. Introduction

Moving fluid interface flows occur in many areas of environmental, biological and industrial engi-

neering. Accurate modelling of the moving interface, such as a wave free surface or Taylor bubble, is an

extremely challenging problem in CFD because the position of the interface at a given time is not known in

advance and must be calculated as part of the solution.

Various techniques have emerged to predict the position of the interface during the solution in time

and fall into one of two categories. These are interface tracking methods, which include moving mesh,

front tracking and particle tracking schemes; and interface capturing methods, which include volume of

fluid (VoF) and level set techniques. Front tracking methods use a piecewise polynomial fit to the
E-mail address: d.m.greaves@bath.ac.uk (D. Greaves).

0021-9991/$ - see front matter � 2003 Elsevier B.V. All rights reserved.

doi:10.1016/j.jcp.2003.08.018

mail to: d.m.greaves@bath.ac.uk

36 D. Greaves / Journal of Computational Physics 194 (2004) 35–56
interface, which is advected with the flowfield [2]. Moving mesh methods may be accurate and have

been applied successfully in simulation of drop formation [3], roll-coating flows [4] and non-breaking

free surface waves [5]. However, they encounter problems when the interface turns over on itself during

free surface wave breaking with associated air entrainment and break-up into spray. Particle tracking

methods are very expensive and not currently practical in three dimensions. Level set and VoF are both

front capturing methods and can be used for modelling large-scale deformations of the interface in-

cluding break up and merging. They differ from front tracking in that the solution is calculated in the

combined fluid domains, with the fluid properties changing at the interface. The interface is then lo-
cated from the zero contour of a distance function in the case of level set [6] and from the volume

fraction field in the VoF method [7].

A VoF method consists of two parts: an interface reconstruction algorithm for approximating the in-

terface from the set of volume fractions and a VoF transport algorithm for determining the volume

fractions at the new time level from the velocity field and the reconstructed front. The basic method is

robust and flexible and VoF schemes are widely used [7–9]. The major drawbacks of this method are its

tendency to smear the interface and the high CPU cost due to the need for fine grids and small time steps.

The use of high resolution adaptive hierarchical remeshing and CICSAM interface advection used in this
work overcomes these drawbacks and combines the benefits of interface tracking and capturing. The in-

terface remains sharp and is effectively tracked by adapting refinements in the quadtree grid.

In this paper, interface tracking schemes for the VoF method are discussed and three schemes de-

scribed in detail. Calculations of advecting interfaces in a known velocity field are made with the three

chosen schemes and the results compared. The interface tracking schemes are calculated on quadtree

grids, which adapt to refine the grid at the interface as it is advected. Comparisons are drawn between

calculations made on uniform and quadtree adapted grids and the benefits of using quadtree grids

demonstrated.
2. The volume of fluid, VoF, method

When considering the incompressible flow of two immiscible fluids, the divergence free velocity field

uðx; y; tÞ obeys

r � u ¼ 0: ð1Þ

The location of the two fluids is specified using a volume fraction function, C, with C ¼ 1 inside one fluid
and C ¼ 0 in the other. Cells for which C lies between 0 and 1 contain the interface. The volume con-

servation of the first fluid can be expressed as

oC
ot

þr � ðuCÞ ¼ 0: ð2Þ

The key to a successful VoF scheme is to solve the volume fraction equation in a way that keeps the

interface sharp.
The original VoF scheme of Hirt and Nichols [7] uses an interface construction that approximates a

curved interface as horizontal and vertical lines in each interface cell. The fluxing scheme uses a combi-

nation of upwinding and downwinding. The advantage of the upwind scheme is that it is stable, but it is

diffusive and may spread the interface over many cells. The downwind scheme is unstable, but sharpens the

interface and so is advantageous in interface tracking. Various VoF fluxing methods have been developed,

most of which aim for a balance between the stability advantages of the upwind scheme and the front

sharpening advantages of the downwind scheme.

D. Greaves / Journal of Computational Physics 194 (2004) 35–56 37
2.1. SURFER

Lafaurie et al. [10] describe a fluxing scheme in which either upwind or modified downwinding is used

depending on the orientation of the interface relative to the fluxing direction. In order to prevent appre-

ciable volume error, it is necessary to direction split the algorithm so that fluxes are calculated in the

x-direction for the entire grid and then a y-direction sweep is performed. When the interface is perpen-

dicular to the flow, they use the front sharpening modified downwind scheme and when the interface is

parallel to the flow, upwinding is used. The downwind scheme is modified to constrain the volume fraction

face value to prevent more fluid being outfluxed than the cell contains and to ensure that the CFL condition

is satisfied. Lafaurie et al. [10] also introduced a flotsam indicator field, which is used to ensure that flotsam
(a cell partly containing one of the fluids entirely surrounded by cells full of the other fluid) is fluxed by

upwinding rather than downwinding, which would lock it in place and prevent it being fluxed. This scheme

is implemented in the SURFER program.

The SURFER VoF differencing scheme used for discretisation of the volume fraction Eq. (2) is dem-

onstrated by considering the local grid for x-direction fluxing shown in Fig. 1. The volume fraction equation

in discrete form is given by

Cnþ1 ¼ Cn þ
Xk¼K

k¼1

fk; ð3Þ

where k is the cell face orientation and K is the number of cell faces. For a regular rectangular grid in two

dimensions, K ¼ 4 and k ¼ e, w, n or s. fk represents the flux of C across the k direction cell boundary. Thus,

Cnþ1 ¼ Cn þ fe � fw þ fn � fs; ð4Þ

and the cell face fluxes are

fk ¼ uk
dt
dx

Ck; ð5Þ

where dt and dx are the time step and mesh size, uk is the velocity at face k and determination of the cell face
value of C is critical.

The technique for x-direction fluxing is explained here; the y-direction fluxing is similar. If we consider

u > 0, the face values for the upwind scheme are Cupwind
e ¼ CC and Cupwind

w ¼ CW. Referring to Fig. 1, up-

percase subscripts indicate values at cell centres and lowercase subscripts indicate cell face values. The

corresponding flux at the east face is

f upwind
e ¼ ue

dt
dx

� �
CC: ð6Þ
W C E

n

s

w eW C E

n

e

s

w

u

Fig. 1. Diagram for x-direction fluxing.

38 D. Greaves / Journal of Computational Physics 194 (2004) 35–56
When the CFL condition is satisfied, jujdt=dx < 1 , the cell will not out-flux more than it contains. The

upwind scheme is stable but diffusive and tends to smear the interface over many cells.

For u > 0, the downwind scheme leads to Cdownwind
e ¼ CE and Cdownwind

w ¼ CC. However, the downwind

face flux uses the east neighbour value for C and so could try to extract from the cell more than it contains

f downwind
e ¼ ue

dt
dx

� �
CE: ð7Þ

The downwind scheme is therefore unstable, but it does have the advantage of sharpening the interface.

Lafaurie et al. [10] introduced a modified downwind scheme, which prevents the cell out-fluxing more than

it contains

If CC < f downwind
e ; then f downwind

e ¼ CC:

If f downwind
e < CC < 1� ue

dt
dx

þ f downwind
e ; then f downwind

e ¼ ue
dt
dx

� �
CE:

If 1� ue
dt
dx

þ f downwind
e < CC; then f downwind

e ¼ ue
dt
dx

� 1þ CC:

ð8Þ

The upwind or modified downwind schemes are chosen depending on the angle between the interface

normal and the fluxing direction. If the interface is perpendicular to the fluxing direction, the front

sharpening aspects of the downwind scheme are advantageous, however, if the interface is parallel the

upwind scheme is used. Here, the x-direction fluxing is considered and so if the interface is close to vertical

the downwind scheme is used and if the interface is close to horizontal then the upwind scheme is used. A
critical angle, hc is defined such that if h < hc then fe ¼ f downwind

e and the modified downwind scheme is used;

if h > hc then fe ¼ f upwind
e and the upwind scheme is used. Lafaurie et al. [10] found that the results were best

for a critical angle, 1:0 < hc < 1:05 in radians. A value of hc ¼ 1:0 is used in this work. The orientation

angle of the interface with the k direction is

hk ¼ arccos nkð Þ; ð9Þ

where nk is the local approximation to the interface normal

n ¼ rhC
rhCj j ; ð10Þ

and rh is a finite difference approximation to the gradient operator. The gradient is calculated using

rh ¼ Ce � Cw

dx
þ Cn � Cs

dy
; ð11Þ

where face values are calculated as the average of adjacent cell centre values and zero gradient boundary

conditions are applied for C.
2.2. PLIC VoF

The VoF scheme outlined above describes the interface implicitly since the volume fraction data must be

inverted to find the approximate interface position. The interface may be reconstructed by SLIC (simple

line interface calculation) [11] or by various PLIC (piecewise linear interface calculation) methods [12].
Gueyffier et al. [13] developed a VoF/PLIC method and applied it to simulation of three-dimensional

droplets.

D. Greaves / Journal of Computational Physics 194 (2004) 35–56 39
A straight line is defined in each interface cell that divides the cell into two parts, each of which contains

the correct volume of one of the two fluids. This interface segment is propagated by the flow and the re-

sulting volume of each fluid in the neighbouring cells is calculated. It is necessary both to calculate the

volume of a fluid from the equation of the interface segment in the cell and inversely the equation of the

interface from the volume of fluid in the cell. The interface normal is calculated from

m ¼ rhC: ð12Þ

This is similar to the normal vector determined using Eq. (10), but in this case the vector is not nor-

malised. The equation for a straight line with normal m is

mxxþ myy ¼ a; ð13Þ

where mx and my are components of m and a is a parameter related to the smallest distance between the line

and the origin. If m is a unit normal then a is equal to the distance between the line and the origin.

The origin is defined at the bottom left hand corner of the cell as shown in Fig. 2. Points E and H are
where the line intersects the x- and y-axes at a=mx and a=my , respectively. The area below the line and

contained within the cell ABCD is

Area ¼ a2

2mxmy
1

"
� H að � mxdxÞ

a� mxdx
a

� �2

� H a
�

� mydy
� a� mydy

a

� �2
#
: ð14Þ

The equation contains the Heaviside step function

HðxÞ ¼ 0 for x < 0;
1 for x < 0:

�

The term a2=2mxmy is the area of the triangle AEH and the two terms containing the Heaviside function are

the areas that must be subtracted from triangle AEH if either point E or point H lies outside the cell. The
interface is propagated by Lagrangian advection from one time step to the next. The time stepping is

Fig. 2. Cell ABCD is cut by the straight line EH, having normal m and parameter a, and contains fluid 1 in region ABFGD and fluid 2

in region FCG.

40 D. Greaves / Journal of Computational Physics 194 (2004) 35–56
performed separately in each spatial direction. The x-component of the velocity at each point on the line is a

simple linear interpolation between the values on the cell faces, Uw and Ue,

uðxÞ ¼ Uw 1
�

� x
dx

	
þ Ue

x
dx

: ð15Þ

During the x-sweep, the x-coordinate of the line changes to the new value

x� ¼ xn þ uðxnÞdt ¼ 1

�
þ Ue � Uw

dx

� �
dt
�
xn þ Uwdt: ð16Þ

The superscript n denotes the value at time n and the asterisk is used to denote a fractional step, the

x-sweep, to be followed by a similar step in y. For example, in Fig. 3 the interface line ab in cell ABCD has

been advected to cd. The new volume of fluid contained in cell ABCD and cell EFBA as a result of the

advection must be calculated. Eq. (16) is inverted to obtain xn as a function of x� and the new values of xn

are substituted into (13) to give

mn
x

x� � Uwdt
1þ Ue � Uwð Þ=dxð Þdt

� �
þ mn

yy
n ¼ an: ð17Þ

This can be written as

m�
xx

� þ m�
y y

� ¼ a�; ð18Þ

in which the new values of a� and m� are

m�
x ¼

mn
x

1þ Ue � Uwð Þ=dxð Þdt ð19Þ

and

a� ¼ an þ mn
xUwdt

1þ Ue � Uwð Þ=dxð Þdt : ð20Þ

Also, the volume of fluid that has moved into the right or left neighbouring cell may be calculated. For
example, if a�=m�

x > dx, then some of the volume has moved into the right hand cell. This volume can be

calculated from (14) after coordinate transformation of

Fig. 3. Lagrangian propagation of the interface during the horizontal advection step.

D. Greaves / Journal of Computational Physics 194 (2004) 35–56 41
x� ¼ dxþ x0; ð21Þ

where x0 is the distance from the left face of the right hand cell. Now Eq. (13) becomes

m�
xx

0 þ m�
y y ¼ a0; ð22Þ

where a0 ¼ a� � m�
xdx.
2.3. CICSAM VoF

Ubbink [1] derived a compressive differencing scheme for discretisation of the volume fraction equation

(2). The scheme is named CICSAM (compressive interface capturing scheme for arbitrary meshes) and is

based on the normalised variable diagram (NVD) used by Leonard [14]. Ubbink�s [1] scheme combines the
convection boundedness criteria (CBC) with the ultimate quickest (UQ) differencing scheme (both defined

below), which is a version of Leonard�s [15] QUICK scheme. The normalised face value for the CICSAM

differencing scheme is calculated by combining these two schemes through a weighting factor derived from

the orientation of the interface to the direction of motion. The method is derived for arbitrary meshes and

so a direction split approach cannot be taken. Instead Ubbink [1] utilises an implicit multi-dimensional

implementation that requires only one sweep through the mesh.

In the CICSAM scheme, the cell face values of the volume fraction used in the discretised volume

fraction equation are determined from a combination of the CBC value given by

~CfCBC ¼ min 1;
~CD

cD

n o
; when 06 ~CD 6 1;

~CD; when ~CD < 0; ~CD > 1:

(
ð23Þ

And the UQ value given by

~CfUQ ¼ min 8cD ~CDþð1�cDÞð6 ~CDþ3Þ
8

; ~CfCBC

n o
; when 06 ~CD 6 1;

~CD; when ~CD < 0; ~CD > 1:

(
ð24Þ

Here ~CD is the normalised variable for the donor cell, calculated from

~CD ¼ CD � CU

CA � CU

; ð25Þ

where subscript U indicates the upwind cell, A the acceptor and D the donor cell. These are determined

depending on the velocity at a given face. With reference to Fig. 1, when considering the east face of cell C,

if ue > 0 then the donor is cell C and cell E is the acceptor; however if ue < 0, then cell E is the donor and

cell C the acceptor. The Courant number, cD, is calculated by summing the fluxes over each cell face

cD ¼
Xn

f¼1

max
�Ffdt
VD

; 0

�

; ð26Þ

where n is the number of faces, Ff is the volumetric flux across a given face calculated from the product

of the face velocity and face area, dt is the time step and VD the cell volume. The weighting factor used

to combine the CBC and UQ contributions takes into account the orientation of the interface and the

direction of motion

cf ¼ min kc
cosð2hkÞ þ 1

2
; 1

�

; ð27Þ

42 D. Greaves / Journal of Computational Physics 194 (2004) 35–56
where hk is the angle calculated in (9) above and kc is a constant introduced to control the dominance of the

different schemes. Ubbink [1] recommends a value of kc ¼ 1. The normalised face value for the CICSAM

differencing scheme is then

~Cf ¼ cf ~CfCBC þ ð1� cf Þ ~CfUQ: ð28Þ

The weighting factor is given by

bf ¼
~Cf � ~CD

1� ~CD

; ð29Þ

and the face values for the new volume fraction distribution used to solve the discrete volume fraction

equation are

C�
f ¼ ð1� bf Þ

Ct
D þ Ctþdt

D

2
þ bf

Ct
A þ Ctþdt

A

2
: ð30Þ

The superscripts refer to the time level, thus the volume fraction field is advected using a Crank–Nicolson

scheme. In some rare cases it is possible for these volume fraction values to have non-physical values, less

than 0 or greater than 1. In the event of this occurring, Ubbink [1] recommends a corrector step that
corrects the weighting factor bf . If a negative volume fraction value occurs, this implies that more of fluid 1

has left the donor cell than is available in it. If this occurs the amount of fluid to be convected is reduced by

the unboundedness error so that the donor cell is left with a volume fraction equal to zero. When the

volume fraction value is greater than 1 this indicates that too much fluid has been convected into the ac-

ceptor cell and in this case the amount convected is reduced so that the acceptor cell has a volume fraction

value of 1.
3. Quadtree grid generation

Hierarchical grid generation is conceptually easy. The grid is created about a set of discrete seeding

points by recursive subdivision of a simple geometric shape that at the root level surrounds the flow do-

main. Rectangular grids may be generated recursively using the quadtree algorithm, hexahedral grids using

the octree algorithm and triangular grids using the tri-tree algorithm. An advantage of hierarchical grids is

that they may be stored in a concise grid cell reference numbering system, which contains all the grid in-

formation and forms a tree data structure. The data tree can be traversed according to simple rules to
obtain grid cell reference numbers of ancestor and neighbour cells: also the grids may be readily adapted by

addition or subtraction of grid cells whilst maintaining the overall tree structure.

Samet [16,17] describes the quadtree data structure and its application to spatial data problems. Al-

though quadtree algorithms were first used in image processing, they have also been used extensively as

mesh generators. Yerry and Shephard [18] applied quadtree algorithms in creating finite element meshes for

structural analysis, as did Messaoud [19] for elliptic partial differential systems. Van Dommelen and

Rundensteiner [20] modelled flow past a cylinder using a discrete vortex scheme, with adaptive remeshing

based on quadtrees. Multigrid-quadtree meshes have been applied [21] to the solution of species transport
and linearised shallow flow problems in complex domains. Quadtree finite element methods using quad-

rilateral and cubic elements have been used for compressible flows [22] and quadtree finite volume methods

for solutions of the Euler equations [23]. In addition, octree grids have been used as a basis for 3-D

tetrahedral finite element mesh generation [24].

Greaves and Borthwick [25,26] demonstrated hierarchical grid generation in two dimensions for

quadtree grids and in three dimensions for octree grids. Hu et al. [27] presented the use of unstructured

D. Greaves / Journal of Computational Physics 194 (2004) 35–56 43
triangular tri-tree grids for adaptive solution of Navier–Stokes equations using a finite volume method for

arbitrary grids.

3.1. The quadtree algorithm

The quadtree algorithm can be summarised as follows:

(1) Define the set of seeding points, Pn, about which the grid will be generated. The seeding points lie along

the interface and their spacing will determine the resolution of the quadtree grid.

(2) Define the unit square or rectangle (root panel) which surrounds the normalised domain of interest.

(3) Divide the root panel into four quadrant panels.

(4) Consider each panel; if the panel contains more than two points, continue with (5), otherwise check the

next panel.
(5) Check whether the maximum division level, Mmax, has been reached. If so, the division of the panel in

question is complete, so go to (4) and check the next panel. When all panels considered either have

reached the maximum division,Mmax, or contain less than three points, the mesh generation is complete.

Otherwise continue.

(6) Divide the panel into four panels, return to (4) and check the next panel.

Additional panels are generated to regularise the grid such that the maximum panel edge length ratio

between two adjacent panels does not exceed two. This will limit the variation of neighbour ar-

rangements encountered when solving discretised equations on the grid. Fig. 4 shows the quadtree grid
generated for a circular interface with radius equal to 0.125 centred at ð�0:2; 0:2Þ, the origin is at the

centre of the root cell. The quadtree grid has a maximum division level equal to 7 and minimum

division level equal to 2. In Fig. 4(a) the grid is not regularised and the large difference in size of

adjacent cells would make solution of the discrete equations very difficult. In Fig. 4(b) the grid is

regularised to limit the edge length ratio; whilst still maintaining a large difference in cell size

throughout the grid, adjacent cells are no more than twice the size of one another. A quadtree panel in

a regularised grid has eight possible neighbours of the same size and 12 possible neighbours of one level

smaller in size.
Fig. 4. (a) Quadtree grid without regularisation and (b) regularised quadtree grid.

44 D. Greaves / Journal of Computational Physics 194 (2004) 35–56
3.2. The quadtree numbering system

Several numbering systems are possible for storing the quadtree information. Here, the numbering

system is essentially due to Van Dommelen and Rundensteiner [20] and enables the tree reference numbers

to be stored as an array of binary digits. The reference number, N, for each panel is made up of a sequence

of successive binary translations at each generation level and is stored in four arrays of eight digits. The

reference number contains information about the panel�s location within the tree, and by manipulation

leads to neighbour finding within the grid. Full details of the numbering system used here and its ma-

nipulation to obtain grid data are described by Greaves [28].

The reference number of a given panel can be regarded as a list of successive orientations NW, SW, NE

or SE corresponding to binary translations 00, 01, 10 and 11, which describe the position of the panel

within its parent. If the large square in Fig. 5 is the root of the tree, then the four smaller squares are the

children of the root cell, created at the first division. The significant part of the reference number for the NE

child is given by, NðI ; 1Þ ¼ 21 (note that +1 has been added to each significant digit in order to distinguish it

from the trailing zeros). Whenever division takes place, four panels are produced having different x and y
translations from the centre of the parent cell. These digits correspond to locations NW, SW, NE or SE and

are appended to the number of the parent panel being divided to produce the reference number of each

child or new panel. Hence the reference numbers of the parent and all ancestor panels are contained within
the reference number of a given panel.

3.2.1. Generation level

The number of divisions carried out to produce a panel of given size is called the generation (or division)

level of the panel, M . Clearly, all panels of the same size have the same generation level. The reference

number is extended by two digits at each division and so the generation level, M , is equal to the number of

non-zero digits divided by two.

3.2.2. Parent panel

The reference number of the parent panel of a given panel is found by converting the last two non-zero

digits to zero.

Fig. 5. (a) Panel orientations and (b) corresponding binary translations.

D. Greaves / Journal of Computational Physics 194 (2004) 35–56 45
3.2.3. Centre coordinates

The x and y coordinates at the centre of the panel are calculated by successive translations at each level

equal to half of the panel edge length, starting from the centre coordinates of the root panel. At each level,

M , the panel edge length is equal to 2�M . This calculation is expressed as

x ¼ xroot þ
XM
m¼1

1

2mþ1
2xðmÞð � 1Þ ð31Þ

and

y ¼ yroot þ
XM
m¼1

1

2mþ1
1ð � 2yðmÞÞ; ð32Þ

where xðmÞ and yðmÞ are the x and y direction binary translations at level m.
3.2.4. Neighbour finding

All possible neighbours of any panel can be determined from its reference number. The tree is searched

to locate the required neighbour starting from the nearest common ancestor, numbered NCA, of a given

panel and its neighbour and ending when a leaf (undivided) panel is reached. The reference number of the

NCA shared by two panels is given by the binary digits that are common to both panels. Reference numbers

increase down through the generations of a family, so that none of the descendants of a given panel can
have a reference number greater than that of the panel�s next sibling. Thus, as the search progresses down

through the tree at each level, of the two branches between which the reference number of the required

panel lies, the branch having the lower reference number is taken. The manipulation of the numbering

system to obtain neighbour references is described in detail by Greaves [28].

3.3. Adaptive grid scheme

An advantage of quadtree grids is that they can be readily adapted by the addition and removal of cells

throughout a time dependent simulation. In this work, grid refinement is used to follow the movement of

the interface. Remeshing of the grid operates by dividing a cell into four if it lies on the interface, i.e. if the

value of C lies between 0 and 1. Derefinement also takes place by removing four sibling cells and replacing

them with their parent. This only occurs where each of the four sibling cells lies away from the interface and

the volume fraction value of each is equal to 0 or 1.
Interpolation and extrapolation of the volume fraction, C, is achieved using PLIC reconstruction. PLIC

reconstruction of the interface in the divided cell is transformed to the coordinates of each newly created

cell and the volume fraction determined from the equation of the line in each new cell. Fig. 6 shows the

interface line segment ab in original cell 0, which after cell refinement lies in new cells 1, 2 and 4 only. The

cell height and width in (14) become dx=2; dy=2 (where dx and dy are the dimensions of the parent cell) and

the parameter a is transformed as follows for each of the new cells:

Cell 1 : a� ¼ a� mydy=2;

Cell 2 : a� ¼ a;

Cell 3 : a� ¼ a� mydy=2� mxdx=2;

Cell 4 : a� ¼ a� mxdx=2:

ð33Þ

The grid is only derefined away from the interface, so the volume fraction for each of the removed

siblings and their parent will be either 0 or 1.

Fig. 6. The shaded areas show the volume fraction of fluid in new cells 1, 2 and 4 after refinement of cell 0.

46 D. Greaves / Journal of Computational Physics 194 (2004) 35–56
3.4. Hanging node treatment

Hanging nodes are inherent in quadtree grids and occur at the centre of a cell face where cells of different

size meet. In order to conserve fluxes, contributions from all cells neighbouring a given face are used to

calculate the fluxes across the face. For example, Eq. (4) applied to cell P in Fig. 7 is

Cnþ1 ¼ Cn þ fe1 þ fe2 � fw þ fn � fs; ð34Þ

where fk is the flux of C across the k-direction boundary.

Fig. 7. Hanging node treatment for fluxes.

D. Greaves / Journal of Computational Physics 194 (2004) 35–56 47
4. Results

In this section a series of tests are reported to assess the CFD methodology for capturing interfaces

between two immiscible fluids. The tests are designed to investigate the accuracy of convection proce-

dures, interface capturing methodologies and grid adaptation. They involve uniform density flow cal-

culations free from gravitational forces and surface tension is not included. The tests involve tracking the

progress of fluid bubbles placed in fluid of the same density in a velocity field of uniform, rotating and

shear flow. In the case of the uniform and rotating flow, the bubble should be convected through the grid
without changing shape. In the case of shearing flow, the bubble will be distorted, but if the velocity is

then reversed and the bubble convected back through the same number of time steps, it should return to

its original shape.
4.1. Comparison of interface tracking schemes

The first series of tests involve translating circular and square interfaces through a uniform velocity field.

The test cases are calculated using the VoF schemes SURFER, PLIC, CICSAM and the accuracy of each

method is compared. A regular grid size of 128� 128 in a unit square domain is used and the initial

contours for the circular interface, positioned at the centre of the grid, are shown in Fig. 8(a). The cal-

culation domain is a unit square and the diameter of the circle, initially placed at the centre of the domain,

is 0.01. The circle is translated in a constant velocity field, u ¼ 1; v ¼ �1 and the time step is determined
such that the Courant number is equal to 0.125. In each case, the results are presented by plotting volume

fraction contours at C ¼ 0:05, C ¼ 0:4, C ¼ 0:6 and C ¼ 0:95. With an accurate interface advection

scheme, the interface should be translated intact towards the bottom right-hand corner of the domain. Figs.

8(b)–(d) show the interface at time t ¼ 0:375 s calculated using SURFER, PLIC and CICSAM.

The interface translated using SURFER interface tracking is clearly distorted; the results obtained for

PLIC and CICSAM are much better and similar to one another, although the original interface is better

maintained with CICSAM. These findings are confirmed by calculating the error, which for a grid of n cells

is calculated as

error ¼

Pn
i¼1

Cfinal
i dxdy �

Pn
i¼1

Cinitial
i dxdy

Pn
i¼1

Cinitial
i dxdy

��������

��������
; ð35Þ

and is summarised for the circle and square translation cases in Table 1. The total volume of fluid should

remain constant and so the sum of the volume fraction value multiplied by the cell size over the entire grid

should remain constant. The error calculates the normalised difference between the initial and final summed

volume of fluid.

Similar results generated for a square interface, size 0:125� 0:125, are shown in Fig. 9. Other details are
the same as for the circle described above. Here, the sharpness of the corners deteriorates if the interface is

smeared over too many cells. As above, the interface calculated using SURFER is clearly distorted, whereas

the PLIC and CICSAM schemes both maintain the interface shape well. The errors summarised in Table 1

confirm that CICSAM gives the most accurate solution for interface tracking in translation.
4.2. Comparison of uniform and adapting quadtree schemes

Uniform translation of a square interface is then investigated for the PLIC and CICSAM schemes

on uniform and quadtree adapted grids in order to assess the benefits of quadtree grid adaptation.

Fig. 8. Advection of circular interface, contours of C plotted at C ¼ 0:05, C ¼ 0:4, C ¼ 0:6 and C ¼ 0:95. (a) Initial interface contours,

t ¼ 0 s, (b) SURFER, t ¼ 0:375 s, (c) PLIC, t ¼ 0:375 s and (d) CICSAM, t ¼ 0:375 s.

Table 1

Comparison of interface tracking schemes

Error

Translation of circle SURFER 9.778e�4

PLIC 1.387e�4

CICSAM 5.039e�6

Translation of square SURFER 1.256e�3

PLIC 2.775e�4

CICSAM 1.189e�5

48 D. Greaves / Journal of Computational Physics 194 (2004) 35–56

Fig. 9. Advection of square interface, contours of C plotted at C ¼ 0:05, C ¼ 0:4, C ¼ 0:6 and C ¼ 0:95. (a) Initial interface contours,

t ¼ 0 s, (b) SURFER VoF, t ¼ 0:375 s, (c) PLIC, t ¼ 0:375 s and (d) CICSAM, t ¼ 0:375 s.

D. Greaves / Journal of Computational Physics 194 (2004) 35–56 49
Here, the quadtree grids have a maximum division level equal to 7 and minimum division level equal to

5. The adapting quadtree grid results are shown in Fig. 10. The volume fraction contours and adapted

grid at t ¼ 0:375 s calculated using the PLIC scheme are given in Figs. 10(a) and (b), and those cal-

culated using the CICSAM scheme are shown in Figs. 10(c) and (d). Comparing the volume fraction

contours in Fig. 10 with those presented in Fig. 9, and by consulting Table 2, it is clear that the

adapted grid achieves a solution of very similar accuracy to that calculated on the uniform grid. Table

2 lists the errors calculated using (37). The adapted grid contains typically 1500 cells compared with the

uniform grid, which contains 16,384 cells; the CPU time for each calculation is also listed in Table 2
and clearly use of the adapted grid makes a considerable saving in both computer space and time.

Using the CICSAM scheme, the quadtree adapted grid size is more than ten times less than the

Fig. 10. Advection of square interface on adaptive quadtree grids. (a) PLIC C contours, (b) PLIC adapted grid, (c) CICSAM C
contours and (d) CICSAM adapted grid.

Table 2

Comparison of adapting quadtree with uniform grids

Error CPU (s)

Translation of square PLIC uniform grid 2.775e�4 291.56

PLIC adapted grid 1.115e�4 75.99

CICSAM uniform grid 1.189e�5 368.76

CICSAM adapted grid 1.178e�5 77.18

50 D. Greaves / Journal of Computational Physics 194 (2004) 35–56

D. Greaves / Journal of Computational Physics 194 (2004) 35–56 51
uniform grid for similar accuracy and the CPU used is nearly five times less than for the uniform grid

calculation.

4.3. Rotation of square interface

In this example, the square interface is advected in a rotating flow, defined by u ¼ rumax cos h;
v ¼ rvmax sin h, where umax ¼ 1:0 and vmax ¼ �1:0 and the radius at a given point in the grid is measured

from the centre of the grid. In this case, the square interface is investigated as this is most likely to be

distorted. The square is initially positioned at the centre of the grid and the centre of rotation is also at the

centre of the grid. The results for PLIC and CICSAM calculated on quadtree adaptive grids (maximum

level 7 and minimum level 5) are given in Fig. 11.

Fig. 11. Rotation of a square interface. (a) PLIC C contours 45� rotation, (b) PLIC C contours 360� rotation, (c) CICSAM C contours

45� rotation and (d) CICSAM C contours 360� rotation.

52 D. Greaves / Journal of Computational Physics 194 (2004) 35–56
For the PLIC scheme, the interface is badly smeared at the corners and, after a full revolution of

360�, the originally square interface looks more like a circle. The quadtree CICSAM scheme maintains a

sharp interface, although there is some rounding of the corners compared with the translation case. Most

of the detail is still sharply defined, however, a finer maximum grid resolution would be required to

improve the corner definition and is used for the simulation of a slotted circle in rotating flow described

in Section 4.4.
4.4. Rotation of slotted circle

In this case a slotted circular interface is positioned in a rotating velocity field. The circle diameter is

0.25 and its centre is initially positioned at x ¼ 0:0, y ¼ 0:1875. There is a vertical slot in the bottom of

the circle of width 0.03 and height 0.15. The interface is advected using CICSAM differencing on
adapting quadtree grids of maximum level 8 and minimum level 5. A finer quadtree resolution is used in

this case to aid clear definition of the slot. Results are presented in Fig. 12. Figs. 12(a) and (b) show the

initial volume fraction contours and the initial quadtree grid at t ¼ 0 s. The volume fraction contours and

adapted grid plotted after 180� rotation are shown in Figs. 12(c) and (d) and after 360� rotation are

shown in Figs. 12(e) and (f). This case was investigated both by Ubbink and Issa [26] and by Rudman

[27].

It is clear from Fig. 12(e) that very little definition has been lost even after 360� rotation. There is some

slight rounding of the sharp corners of the slot, but the contours have not spread visibly. Smearing of the
interface has been prevented and computational effort minimised by using high resolution adapting

quadtree grids.
4.5. Shear flow

A more stringent test for the advection scheme is to operate in a shearing flow field. In this case, also

investigated by Ubbink and Issa [29] and by Rudman [30], the velocity is prescribed to be

u ¼ umax sin h cos h; v ¼ �vmax cos h sin h, where umax ¼ 1:0 and vmax ¼ �1:0. In most real interfacial flow

cases, the interface is moving under the influence of fluid shear and the interface deforms considerably.

Here, an adapting quadtree grid is used with maximum division 7 and minimum division 5, and the circle of

diameter 0.36 is initially positioned at x ¼ 0:0, y ¼ �0:2. The interface is first advected forward for a given

length of time and then the velocities are reversed for the same length of time in order to return the volume
fraction field to the initial condition. A perfect advection scheme should result in the same initial volume

fraction field.

The results of this test are presented in Fig. 13. The interface is initially advected up to t ¼ 5:0 and then

up to 10.0 s. Each time the velocities are reversed to return the volume fraction field to its initial condition.

In this case the reconstructed interface is plotted rather than the volume fraction contours. In Figs. 13(a)

and (b), the initial interface and initial quadtree grids are shown. The grid also has the velocity vectors

(scaled by 0.02) superimposed. Figs. 13(c) and (d) show the interface and adapted grid at t ¼ 5:0 s and Figs.

13(e) and (f) show the resulting interface and grid after the velocity has been reversed and the interface
advected for 5 s in the opposite direction. Similarly, Figs. 13(g)–(j) show the results at t ¼ 10:0 s and after

stepping back to t ¼ 0 s with velocities reversed.

After reversing from t ¼ 5:0 s, the resulting circular interface is very close to the initial circular in-

terface, despite being highly distorted at t ¼ 5:0 s. At t ¼ 10:0 s, the interface has completed nearly two

full revolutions, is distorted into a spiral and beginning to break up at the tail end. Even so, when

tracked back for a further 10 s with velocities reversed, the resulting interface is close in appearance to

the original circle.

(a) (b)

(c) (d)

Fig. 12. Rotation of a slotted circle. (a) Initial volume fraction contours, (b) initial grid, (c) C contours after 180� rotation, (d) adapted
grid after 180� rotation, (e) C contours after 360� rotation and (f) adapted grid after 360� rotation.

D. Greaves / Journal of Computational Physics 194 (2004) 35–56 53

(a)

(c)

(b)

(d)

Fig. 13. Circular interface in shear flow. (a) Interface at t ¼ 0:0 s, (b) quadtree grid at t ¼ 0:0 s, (c) interface at t ¼ 5:0 s, (d) adapted

grid at t ¼ 5:0 s, (e) interface after reversing from t ¼ 5:0 to t ¼ 0:0 s, (f) adapted grid after reversing from t ¼ 5:0 to t ¼ 0:0 s, (g)

interface at t ¼ 10:0 s, (h) adapted grid at t ¼ 10:0 s, (i) interface after reversing from t ¼ 10:0 to t ¼ 0:0 s and (j) adapted grid after

reversing from t ¼ 10:0 to t ¼ 0:0 s.

54 D. Greaves / Journal of Computational Physics 194 (2004) 35–56

(g) (h)

(i) (j)

Fig. 13. (continued)

D. Greaves / Journal of Computational Physics 194 (2004) 35–56 55
5. Conclusions

An adaptive quadtree VoF method has been developed, which uses CICSAM differencing for advection

of the interface and PLIC reconstruction for interpolation of the volume fraction as the grid adapts. Three

separate interface tracking schemes are investigated and compared before selecting CICSAM, which is
demonstrated to be the most accurate. Both PLIC and CICSAM schemes are combined with adaptive

quadtree interface tracking and the results compared with those from uniform grid calculations. Quadtree

adaptation is shown to provide a significant saving in grid size and computation time. A typical quadtree

grid size used here is approximately 10 times less than the equivalent uniform grid and the computation

time approximately five times less. The new quadtree-based interface tracking scheme is also applied to

more complex interface motion simulations and found to combine successfully high accuracy with sharp

definition of the interface even for highly sheared flows.
Acknowledgements

The author is most grateful to the Royal Society for funding this work.

56 D. Greaves / Journal of Computational Physics 194 (2004) 35–56
References

[1] O. Ubbink, Numerical prediction of two fluid systems with sharp interfaces, PhD Thesis, Imperial College of Science, Technology

and Medicine, London, 1997.

[2] J.M. Hyman, Numerical methods for tracking interfaces, Physica 12D (1984) 396–407.

[3] E.D. Wilkes, S.D. Phillips, O.A. Basaran, Computational and experimental analysis of dynamics of drop formation, Phys. Fluids

11 (12) (1999) 3577–3598.

[4] M.S. Carvalho, L.E. Scriven, Three-dimensional stability analysis of free surface flows: application to forward deformable roll

coating, J. Comput. Phys. 151 (1999) 534–562.

[5] D.M. Greaves, A.G.L. Borthwick, G.X. Wu, R. Eatock Taylor, A moving boundary finite element method for fully non-linear

wave simulations, J. Ship Res. 41 (1997) 181–194.

[6] D.M. Causon, An efficient front tracking algorithm for multi-component fluid calculations with biomedical applications, Zeit.

Angew. Math. Mech. 76 (S1) (1996) 371–372.

[7] C.W. Hirt, B.D. Nichols, Volume of fluid (VOF) method for the dynamics of free boundaries, J. Comput. Phys. 39 (1981) 201–

225.

[8] P. Heinrich, Nonlinear numerical model of landslide-generated water waves, Int. J. Engrg. Fluid Mech. 4 (4) (1991) 403–416.

[9] A. Tomiyama, A. Sou, H. Minagawa, T. Sakaguchi, Numerical analysis of a single bubble by VoF method, JSME Int. J, Ser. B 36

(1993) 51–56.

[10] B. Lafaurie, C. Nardone, R. Scardovelli, S. Zaleski, G. Zanetti, Modelling merging and fragmentation in multiphase flows with

SURFER, J. Comput. Phys. 113 (1994) 134–147.

[11] W.F. Noh, P. Woodward, SLIC (Simple Line Interface Calculations), Lect. Notes Phys. 59 (1976) 330–340.

[12] N. Ashgriz, J.Y. Poo, FLAIR: flux line-segment model for advection and interface reconstruction, J. Comput. Phys. 93 (1991)

449–468.

[13] D. Gueyffier, J. Li, A. Nadim, R. Scardovelli, S. Zaleski, Volume-of-fluid interface tracking with smoothed surface stress methods

for three-dimensional flows, J. Comput. Phys. 152 (1999) 423–456.

[14] B.P. Leonard, The ULTIMATE conservative difference scheme applied to steady one-dimensional advection, Comput. Methods

Appl. Mech. Engrg. 88 (1991) 17–74.

[15] B.P. Leonard, A stable and accurate convective modelling procedure based on quadratic upstream interpolation, Comput.

Methods Appl. Mech. Engrg. 19 (1979) 59–98.

[16] H. Samet, The Design and Analysis of Spatial Data Structures, Addison-Wesley, Reading, MA, 1990.

[17] H. Samet, Applications of Spatial Data Structures, Addison-Wesley, Reading, MA, 1990.

[18] M.A. Yerry, M.S. Shephard, A modified quadtree approach to finite element mesh generation, IEEE Comput. Graph. Appl. 3 (1)

(1983) 39–46.

[19] B. Messaoud, Parallel and Adaptive Algorithms for Elliptic Partial Differential Systems, PhD Rensselaer Polytechnic Institute,

Troy, NY, 1992.

[20] L. van Dommelen, E.A. Rundensteiner, Fast, adaptive summation of point forces in the two-dimensional Poisson equation, J.

Comput. Phys. 83 (1989) 126–147.

[21] J. J�ozsa, C. G�asp�ar, Fast, adaptive approximation of wind-induced horizontal flow patterns in shallow lakes using quadtree-based

multigrid method, C.M.W.R. Denver, 1992.

[22] D.P. Young, R.G. Melvin, M.B. Bieterman, F.T. Johnson, S.S. Samant, J.E. Bussoletti, A locally refined rectangular grid finite

element method: application to computational fluid dynamics and computational physics, J. Comput. Phys. 92 (1991) 1–66.

[23] D. de Zeeuw, K.G. Powell, An adaptively refined cartesian mesh solver for the Euler equations, J. Comput. Phys. 104 (1993) 56–

68.

[24] M.S. Shephard, M.K. Georges, Automatic three-dimensional mesh generation by the finite octree technique, Int. J. Numer.

Methods Engrg. 32 (1991) 709–749.

[25] D.M. Greaves, A.G.L. Borthwick, On the use of adaptive hierarchical meshes for numerical simulation of separated flows, Int. J.

Numer. Methods Fluids 26 (1998) 303–322.

[26] D.M. Greaves, A.G.L. Borthwick, Hierarchical tree-based finite element mesh generation’’, Int. J. Numer. Methods Engrg. 45

(1999) 447–471.

[27] Z.Z. Hu, D.M. Greaves, G.X. Wu, Numerical simulation of fluid flows using an unstructured finite volume method with adaptive

tri-tree grids, Int. J. Numer. Methods Fluids 39 (2002) 403–440.

[28] D.M. Greaves, Numerical modelling of laminar separated flows and inviscid steep waves using adaptive hierarchical meshes,

DPhil Thesis, Oxford University, 1995.

[29] O. Ubbink, R.I. Issa, A method for capturing sharp fluid interfaces on arbitrary meshes, J. Comput. Phys. 153 (1999) 26–50.

[30] M. Rudman, Volume-tracking methods for interfacial flow calculations, Int. J. Numer. Methods Fluids 24 (1997) 671–691.

	A quadtree adaptive method for simulating fluid flows with moving interfaces
	Introduction
	The volume of fluid, VoF, method
	SURFER
	PLIC VoF
	CICSAM VoF

	Quadtree grid generation
	The quadtree algorithm
	The quadtree numbering system
	Generation level
	Parent panel
	Centre coordinates
	Neighbour finding

	Adaptive grid scheme
	Hanging node treatment

	Results
	Comparison of interface tracking schemes
	Comparison of uniform and adapting quadtree schemes
	Rotation of square interface
	Rotation of slotted circle
	Shear flow

	Conclusions
	Acknowledgements
	References

